A New Method for Solving Non-Linear Complementarity Problems
نویسندگان
چکیده
The non-linear complementarity problem NLCP is to find a vector z in IR satisfying 0 6 z ⊥ f(z) > 0, where f is a given function. This problem can be solved by several methods but the most of these methods require a lot of arithmetic operations, and therefore, it is too difficult, time consuming, or expensive to find an approximate solution of the exact solution. In this paper we give a new method for solving this problem which converges very rapidly relative to most of the existing methods and does not require a lot of arithmetic operations to converge. For this we show that solving the NLCP is equivalent to finding zero of the function F . After we build a sequence of smooth functions F (k) ∈ C∞ which is uniformly convergent to the function F and we show that, an approximation of the solution of the NLCP is obtained by solving F (x) = 0 for a parameter k large enough. We close our paper with some numerical examples to demonstrate the efficiency of our method. The numerical results obtained in this paper are very favorable and showed that our method works well for the problems tested.
منابع مشابه
Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملModulus-based GSTS Iteration Method for Linear Complementarity Problems
In this paper, amodulus-based generalized skew-Hermitian triangular splitting (MGSTS) iteration method is present for solving a class of linear complementarity problems with the system matrix either being an H+-matrix with non-positive off-diagonal entries or a symmetric positive definite matrix. The convergence of the MGSTS iterationmethod is studied in detail. By choosing different parameters...
متن کاملA Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem
In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.
متن کاملCorrector-predictor arc-search interior-point algorithm for $P_*(kappa)$-LCP acting in a wide neighborhood of the central path
In this paper, we propose an arc-search corrector-predictor interior-point method for solving $P_*(kappa)$-linear complementarity problems. The proposed algorithm searches the optimizers along an ellipse that is an approximation of the central path. The algorithm generates a sequence of iterates in the wide neighborhood of central path introduced by Ai and Zhang. The algorithm does not de...
متن کاملPresentation and Solving Non-Linear Quad-Level Programming Problem Utilizing a Heuristic Approach Based on Taylor Theorem
The multi-level programming problems are attractive for many researchers because of their application in several areas such as economic, traffic, finance, management, transportation, information technology, engineering and so on. It has been proven that even the general bi-level programming problem is an NP-hard problem, so the multi-level problems are practical and complicated problems therefo...
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015